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Consider the following system of Hamiltonian equations
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We assume that T is a positive definite quadratic form near the point ¢ = 0 and
the origin is an isolated state of equilibrium of the system (1),

Below we obtain the sufficient conditions of instability of the position of equili~
brium of the system (1), which generalizes certain results already obtained (see [1, 4 ]
and others), in what follows, we shall assume that
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since otherwise we can attain it by means of the linear canonical transformation q = D’x,
Yy = Dp,where B = {b;; (0)} = DD’ with the generating function W (x, p) = «'Dp.

Theorem 1, let the following conditions hold:
1°, The potentlal energy can be written in the form of a sum V (q) = Vv, (q) +
® (9), where ¥y (@) is a homogeneous function of dimension p > 2.
2°. Ve c‘” O (@) e @, b(q) e D ming_, V, ()= V, () = —A<0.
3°. For sufficiently small tand z ( § is an arbitrarily small quantity) | Fi (7, 0) |
<Nt
[ F3 (T Zaa) — F; (7, 23) | <8 | 2w — 2y

where
I

9q; qi=Hei+ i)

Fi(v,z)=+'"*

Then the zero solution of the system (1) is unstable,

Proof, Itis sufficient to show that the system (1) has a solution p (t), g (t) with
the property that p () - 0 and q () —» 0 as ¢-> — oo or ¢— 1 oo (obviously,
in addition to the solution P (), q (¢) the system( 1)alsohas asolution — P (—Dvq (—1).

Let us perform the change of variables

fBr=at ="(;+2.4) t=23..,n

p= (20! et (€;F 2pqeid I=1,2,..,n

(2)
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We assume that ¢ 5= 0, since otherwise 2i could be renumbered.
From (2) we obtain
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f]
n—1+1+ i=23...,n

dz, Pn-1+i
T = (22
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Tp'(ci+ Zp14i) = Z 13 % T
7=1
where the repeated dots denote either the terms containing 7, or those of order higher
than the first in 2; , In deriving the above expressions, we made use of the equations

2 by, (@p; =Pr1+...= (2AY Bl (e 2 )+ ..
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v, av oD
“H(’Eﬁ' 5090 " +---)+—a;.‘
q; a=cy e q;94; T=cy i leg=v(cy+zx_3)

which follow from the conditions of Theorem 1, As the result we have

td——-Az—}—f(r,z) 3)

Here A isa constant (2r — 1) (2n — 1) matrix and the vector function (1, z)
satisfies , in sufficiently small neighborhood of the coordinate origin, the following con-
ditions :

[7 (v, O SNl th | £(Ts Zaw) — f (T, Zg) | < €| Zgse — 25|, Ny = eomst

(£ is an arbitrarily small quantity).

We know that when the above conditions hold, the system (3 ) has at least one tra-
jectory emerging from the coordinate origin, Let zi = @; (¥v) (=1,2,..., 2n — 1)
be a solution of the system (3) and let @; (1) > 0 as T —» + 0. Then

gr=0T ¢, =T(;+@; (M) i=2,3,....n
p; =@M, + o (7)), i=1,2, ..,

is the phase trajectory of the system (1) adjacent to the position of equilibrium, It fol-
lows therefore that the system (1) has a phase trajectory along which the solutions attain
the position of equilibrium as ¢ — —oo. This in tumn implies the instability of the
position of equilibrium,

Let us give a geometrical representation of the conditions of Theorem 1. Consider
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the systems of differential equations with the corresponding Hamiltonians

1 k3 n

e L !

i, = Zl,pjw V@, Hy=-3 Y by @ pip,+ V, (@) + O a)
Ju= iy=1

The system corresponding to the Hamiltonian Hj has the solution

exp [(2h)'/2t), p =2
¢j=¢% pj=cT, T :{

2— W 2/ (2-u)
{1 + g (2&)‘/’3} . on>2
where the vector¢’ = (¢, ¢, . - ., ¢y} and the number A are determined from the condition
min V(@)= Vy (@) =~k 1>0
Consequently the relations 8V, (¢, ¢z - - -, ¢n) / 3cj -+ 4 pe; = 0 hold.

The particular solution obtained shows that the position of equilibrium of this sys-
tem is unstable, The conditions of the theorem ensure the proximity of the systems
with the Hamiltonians H, and ¥, along the curve ¢j = ¢;7, pj = (2A)"27"n¢; which
represents the phase trajectory of the unperturbed system,

When the function V,, (q) is nonnegative and V (q) may assume negative values
near the stationary point, then the theorem proved above cannolongerbeapplied tothe
system (1), In this case theChetaev theorem (see [2] ) is found useful .However, Chetaev
did not give any general examples of constructing the vector function F = (Fy, Fy, . .

.» F,), which appears in the conditions of the theorem.

We shall now show a method of constructing the vector function in question by means

of several examples.

Example 1, Consider a system with the Hamiltonian

n n n
1 1 1
H@w =g Y Pt V@ =g Y P Yy et Vet Yt
j==1 j=1

=2

Let ¢; >0 (i == 2,3, ..., nyand the function V (q) be of alternating sign in any neigh-
borhood of the coordinate origin, We seek the vector function F = (Fy, Fy, . . -, Fp)
as a solution of the equation
FVo -+ FaVy 4. FV, =V (4)
in the form
Flel(ql)’ F2=F2(?1!q2)$"'y Fnan(ql,qz,...,qn)

Let 45 = @i (@) 7 =2, ..., n be asolution of the system V¢, =0, Vo, =0,...,

V, = 0 (according to known theorems the system in question has a unique analytic

solution ). Considering the equation (4 ) along the curve 9 = @i (91), we obtain

g =V Vo) g mpqo=1 @ /' @I* = Fagl, o=m
=1
{f (q) == 0, since at a fixed value of ¢; the function V (gy, - - ., g5} assumes its mini-
mum value at ¢ = @; (g;) and this value is by definition negative).Tofind Fz (91, 92)
we consider the equation (4 ) along the unique analytic solution ¢j = ¥ (41, ¢2) (¢ =
3,4,...)of thesystem V, = 0,... Vqﬂ = 0, We obtain
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Fa(qy, a2) = [(V—FV,) Vq,—]] lquwj
Using the Weierstrass theorem [ 6 ] we can show that Fp (g, ¢2) is an analytic func-

tion, and we obviously have Fa (¢1, 92) = Ygga + . . . .
In this manner we determine, one after the other Fj = Y,¢j-+ .. ... In what

follows , we shall find useful the following lemma,

Lemma.let V (z,9) = Vp+ V,,,, + . . ., and let the following conditions hold :
1°. Equation Vy = 0 defines the functions y = 6;j (z) = ajz -+ .. . They have,
in general, complex coefficientsand a; = asifi#j, @i 0, j= 1,2 ..., m—1.

2°.V (2,8, (x) = yg")zm + L ,yg"):# 0.In this case an analytic vector function
F == (Fy, F,) exists which is a solution of the equation
F1Vx+F2Vym(x2+y2)tV (5)
Yom 2, foreven m
- {1/2(m+1)———2, for odd m

Proof, We seek a solution of (5) in the form
Fi(z. ) =)+ @)y + ... +\Pm.2(ﬂym"2, Fo=Fylz,y)
Considering Eq.(5) for y = 0;(z) {=1, 2, ..., m — 1), we obtain the following sys-
tem for determining ¥; (x):
Yo+ 01+ - .. O] My = (22 8) @ (2) (6)
Yo+ b1+ 4 07 M, = (22 + B s ()

........................

d -1
%@ =1V V)N lymgyy =V (5. 0) (5 V (28, @) =t ...
The functions ¥; (z) are obtained from (6 ) uniquely, and it can be shown that ¥; (z)
are real analytic functions, Further we have
Fa=[(2+ )V (2, 9) — F V1V,

By virtue of the Weijerstrass theorem mentioned above, F;{z,y) is an analytic function.
Having found the lower termsof the analytic functions Fpand Fg, we can show that

Fi=miz(@+ ) +..., Fp=mly@+9f+...

Example 2, Consider the Hamiltonian

n n n
1 1
3=1 =1 =3
cj>0’ i=34...n N>2
Let g5 =1%; (g1, 92) G =3, ..., n) be asolution of the system of equations V, =0,

Vi = 0, ..., Vo = 0. We assume that the function

n ©
Vg 92 s oo 0 $) =V (90 02) =V, ° + Vm+1 +...
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satisfies the conditions of the lemma ., We seek the vector function F =(&y, Fp, . . ., Fu)
as a solution of the equation

FWoi+FoVo +.. o+ Fann = (g2 + ¢} V (1)
in the form

Fy = Fy (g1, @), Foa= Fy (g =
’ 1r G2)» Fg = Fy @15 92, 93), - -
Fr=Fo(@y e -\ a) :

A

Considering now Eq.(7) on the manifold defined by the equations ¢; = ¥; (91, 2
(f=3,...,n), weobtain (! is determined in the same manner as in the lemma)

FaVo o 4+ FoV ° = (g2 + g2 V° )

Equation (8 ) yields #; and . Further,if Fy, Fs, » . . » Fi have been found, then Fra
can be determined by considering Eq.(7) on the manifold defined by the equations
quw =0,...,V m 0. Clearly, F; are analytic functions and their lower order
terms have the form
Fy==m7g; (0% + g b, Fy=milg(ed+ (122)1 +...

Fa=1sgs 02+ +..0n Fpo=1g, @2+ & +...

The quadratic form
n

1 [ 9F, OF,
Z%WP%277$+W‘
i, =1 ! t
is positive definite on the set

Q=0NQ& G=@< Q={Fe<h
J=1

(k is a sufficiently small number),
Indeed , we have ¢s> + ¢, + - .« + 92> <8 (9*> + 92%), ontheset Q, where
§ (k) is an arbitrarily small quantity when his small, Writing the corresponding matrix
in the form G == Go + Gy + . . - where G, is a matrix composed of the lower order
terms, we obtain

Gg === rl—IG* == rl—l X

m7 {20 -} 1) 94% -+ ¢a7] 2lm™g,9, alg:gs - . - Yolgagn hlayg,
2im gy, m7 g ® 20+ 1) g?] Molgegs - - - Yelgag, algag,,
Yalgsqy 5lgsqs roo... 0 0
X - M .. -
1/21q-n...1q1 1/21(1,1__1(]2 0 v r 0
Yolgay alg, qy 0 ... 0 r

r=¢:*+ 3%

The Silvester determinants which begin inthe lower right-hand comerofthe matrix G,
have the form

A].:r: A‘z':rzg..., An ,—:_rn_z

]
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2.2
By =1 {7 Lo+ @+ 1) g8l — T2 o}

- 12g,2 2
L _|m@ Dt et 0 2Amlgygy — —2
nT - q190 g,
2m gy, — —— p m=1[g2 + (2L + 1) gg2] — 2‘772- p

=924+ 92+...+¢

In computing A, . and 4, ,wehaveused the following obvious assumption ;if A, ¢, &

and k arethe m X m, m X n, n X m, n X n matrices respectively, and |k | == 0, then
A ¢
bk

We have,ontheset @, A; >0, 7=1,2,...,n with &*+ a®+ ...+ g2 0.

Consequently the vector function satisfies the conditions of the Chetaev theorem and

this proves

=|k||A—ckb]

Theorem 2., If the conditions: 1) function V°(¢;, ¢2) satisfies the conditions of
the Lemma and 2) function V (¢, ¢a, - . ., ¢5) has no strictly local minimum of the posi-
tion of equilibrium, both hold , then the position of equilibrium of the Hamiltonian system

.94 . OH .
q; __apj s Py ='-5§;, i=4L2,...,n

is unstable.

The author thanks V, V, Rumiantsev and the participants of his seminar for assessing
the paper.
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