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Consider the following system of Hamiltonian equations : 

aH aH . 
‘Ij =api1 Pi’=--$--, i=i*2 ,...1 It (1) 

n 

H(q, p)=T+V=$ c b,j (Q) PiPj + ’ (91 

i, j-1 

We assume that T is a positive definite quadratic form near the point Q = 0 and 
the origin is an isolated state of equilibrium of the system (1). 

Below we obtain the sufficient conditions of instability of the position of equili - 
brium of the system (1)) which generalizes certain results already obtained (see Cl, 43 
and others). In what follows, we shall assume that 

* n 

2 bii (0) PiPj = jzl Pia 
i, j=l 

since otherwise we can attain it by means of the linear canonical ~a~formati~ q = B’x, 

Y = BP, where B = {bij (0)} = DD’ with the generating function W (x, p) = z’L)p. 

The ore m 1, let the following conditions hold : 
1’. The potential energy can be written in the form of a sum Ir (q) = vv (q) + 

@ (41, where vcr (Q) is a homogeneous function of dimension P >, 2. 

2”. yp (q) ei c(‘), CD(q) E d2), bij (q) E $7 minlg,,r r’fi (q)= ‘; (c) = - h < 0. 

3”. For sufficiently small T and z ( 6 is an arbitrarily small quantity) I Fi (7, 0) ( 

I F, (‘7 z**) - ‘i (‘9 z*) I G 6 I Q* - z* 1, 

where 

Then the zero solution of the system (I) is unstable. 

Proof. It is sufficient to show that the system (1) has a solution p (t), q (t) with 
the property that p (t) -, 0 and q (t) -+ 0 as t --f - 00 or t---) -!- CO ( obviously , 
in addition to the solution P (11, q (t) thesystem( 1)alsohasasolution - P (--thq (-t)). 

Let us perform the change of variables 

41= ‘1’8 Qi = ’ (‘i -t z&..l,)? i = 2, 3, . . ., n 
(2 1 

pi = (Zh)‘~+P (ci + zn_i+& i = 1, 2, . . ., n 
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We assume that ~1 # 0, since otherwise 4i could be renumbered. 

From (2) we obtain 
dz. 1-l ‘qi 

7-=--c.- 7,i_l= 
dr dz 2 

c,[~blj(q)pj]-l~bij~q)Pj-Ci-'i_l=-'i-l-cl-lCiin+ 

j=l j=l 

‘n_1+i + - . ‘9 
i = 2, 3, . . ., n 

dzn-l+i 

*---a7 
= (2~)-‘/+-‘l’~ 2 - + II (Ci + Zn-l+i) = 

where the repeated dots denote either the terms containing z , or those of order higher 
than the first in zj . In deriving the above expressions, we made use of the equations 

R 

Is blj(Q)Pj=Pl+*** = (2h)%‘t’/4 (Cl + 2 n ) + . . . 

j=l 

I 

= 

'+=r(CkZk-l) 

which follow from the conditions of Theorem 1. As the result we have 

dz 
*dt = AZ + f (5 z) 

Here A is a constant (2n - 1) (2n - 1) matrix and the vector function I (r, z) 
satisfies, in sufficiently small neighborhood of the coordinate origin, the following con- 
ditions : 

(a is an arbitrarily small quantity ) , 
We know that when the above conditions hold, the system (3 ) has at least one tra- 

jectory emerging from the coordinate origin. Let zi = Pj (r) (i = 1, 2, . ,. ., 2n - 1) 
be a solution of the system (3 ) and let cpj (r) + 0 as z --f + 0. Then 

qI = c,z, qi = t (ci + ‘pi+ (t)), i = 2, 3, . . ., n 

pi = (2h)‘k’l*(ci + ~+i+~ (z)), i = 1, 2, . . . , n 

is the phase trajectory of the system (1) adjacent to the position of equilibrium. It fol- 
lows therefore that the system (1) has a phase trajectory along which the solutions attain 
the position of equilibrium as t + --03. This in turn implies the instability of the 

position of equilibrium. 
Let us give a geometrical representation of the conditions of Theorem 1. Consider 
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the systems of differential equations with the corresponding Hamiltonians 
n n 

c Pj2 + Vp (q)t 
j==l 

ff.2 = f z bii (4) PiPj + VP (Q) + CD (9) 
i,j=l 

The system corresponding to the Hamiltonian HI has the solution 

i 

exp [(2h)‘ir t], u = 2 
‘i, = ciz, Pj = Cjtt ’ = 

r @ 
1 1_ 2- p - (2Q%q ’ @+), 

2 P>2 

where the vectorc’ = (cl, c,, . . ., en) and the number h are determined from the condition 

minVP(q)=V1,(c)=--h, h>o 
Id-1 

Consequently the relations aV, (~1, c2, . . ., 4 / W i- 1 ~.CI = 0 hold. 
The particular solution obtained shows that the position of equilibrium of this sys- 

tem is unstable. The conditions of the theorem ensure the proximity of the systems 
with the Hamiltonians HI and II, along the curve qj = CjT, pj = (2h)“z~1’zuej which 

represents the phase trajectory of the unperturbed system, 
When the function Vp (q) is nonnegative and V (q) may assume negative values 

near the stationary point, then the theorem proved above can no longer be applied to the 
system (1) . In this case thechetaev theorem (see [ 2 ] ) is found useful J-lowever , Chetaev 

did not give any general examples of constructing the vector function F = (Fi, F,, . . 
*> F,), which appears in the conditions of the theorem. 

We shall now show a method of constructing the vector function in question by means 

of several examples, 

E x a m p 1 e 1. Consider a system with the Hamiltonian 
12 TX TL 

z 
pj2 -I- V(q) = + 

c c 
Cj’l,? + v, c v* + . . . 

j==l j=l j =.J 

let ci > 0 (i = 2, 3, . . ., n) and the function V (q) be of alternating sign in any neigh- 

borhood of the coordinate origin. We seek the vector function F = (Fr, F,, + . -, Ftt) 
as a solution of the equation 

Flj7_ + “aV_ + . ‘ . _t F,Qn = v (4) 

in the form 

Fi = pi (G F, = FS (~1, q,), . . ., F, = F, (41, ~2, . . -, qn) 

Let pi = cpi (ql), j = 2, . . ., n be a solution of the system VQi = 0, I’,, = 0, * * * * 
Yqn = 0 (according to known theorems the system in question has a unique analytic 

solution). Considering the equation (4) along the curve R = Cpi (qi)r we obtain 

E‘i (G = I’ (V4,)-1 IqjlcPjtulf = f ((II) I/’ (c/,)1-l = 5 ajqlj, a1 = m-1 

j==l 

(f (ql) $ 0, since at a fixed value of (II the function I/ (ql, . . ., qn) assumes its mini- 
mum value at qj = ‘pi fql) and this value is by definition negative ) . To find F2 (ql, qa) 

we consider the equation (4) along the unique analytic solution Qi = ‘#j (91, 42) (i = 
3, 4, * * .,) of the system V,I = 0, . . ., F,_ = 0. We obtain 
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t,Jsing the Weierstrasstheorem [ 6 1 we can show that F!z (91, 42) is an analytic func- 
tion, and we obviously have F, (41, qg) = ljsqs -I- . . . . 

In this manner we determine, one after the other Fj = l/~qj -!- . . . . , In what 
follows, we shall find useful the following lemma, 

Lemma-Let V (z, Y) = V,+ Vm+l+ . . . , and let the following conditions hold : 
1”. Equation Vv = 0 defines the functions y = 8i (4 = ajx + * l l They have s 

in generat s complex coefficients and ai # of if i # j, ai + 0, j = 1, 2, . . _, m - I. 

2”. v (t, 8, (5)) = +~X i_ yS’)rm+l+- . 0 * , y$+ 0.1~ this case an analytic vector function 

F = (I;;, F,J exists which is a solution of the equation 

(5) 

E 
= ‘/z(~-t-~) { 

1/2m - 2, for even m 

- 2, for odd m 

Proof. We seek a solution of (5) in the form 

Fi (2, y) = 40 (5) + 9, (4 II + 6 . . + Qm+ (21 Ym-2~ F2 = F2 ($9 Y) 

Considering a.(5) for y = 9j (2) (i= 1, 2, . . ., RX - I), we obtain the following sys- 
tem for determining 9j (r): 

40 A- %% + ..4- e,m-v,, = w-k e~~)r~l~~~ (61 

40-i-&h+ * * * +~y%,T+.~=(~2t@2 f %@I 
al 

. . . . ..*****.***.....**.*. 

l . . . . . ..*................ 

. . . ..I................. 

scl;_~~_,yrli-* * * +%3l$n+= w+ ql_,hJ,-, (4 

9j tz) = Iv (vJ-ll lya@j(r)= v(z* ej t2)) (& V (2, 8j (I)j)-l = VJ-‘2 + l a l 

The !i,mctions $j (2) are obtained from (6 ) uniquely, and it can be shown that $j (4 
are real analytic functions. Further we have 

Fa = IV + y2)* V (5, Y) - F&J Vs+ 

By virtue of the Weierstrass theorem mentioned above, Fs (z, y) is an analytic function. 
Having found the lower terms of the analytic functions Pr and FB* we can show that 

PI = m-%z (z2 + y?)’ + * I .) Fa=m-1y(z2+y2)1f... 

Example 2. Consider the Hamiltonian 
n n ra 

'j>O* j = 3, 4, . . . . n, N >z 

Let 41' = 3pj (Ql, 9%) (i = 3, . . ., n) be a solution of the system of equations Vqa = 0, 
V P1 = 0, * S ‘, v*= = 0. We assume that the function 

Ir(!?,, P21 %t . * ‘2 4$.&> = v* 1%7 Y&2) = vmo + v;,x Jr - f * 
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satisfies the conditions of the lemma .We seek the vector function F =(I$, F2, . . . , FTt) 
as a solution of the equation 

&I/‘,, + F,V,* + * - .+ F,V, n = (cI12f 422)' v (1) 

in the form 
F; = FI (4, qdt 
F,, = 

F2 = F2 (qu qa), 

Fn (Pl, !72r * - = * 4n) 
Pa = Fs (ql, qs, qa), . . . , 

Considering now Eq , (7 ) on the manifold defined by the equations Qj = $j (PI, (ra) 
(J-=3,..., n), we obtain ( t is determined in the same manner as in the lemma) 

FI”,p + F,V,*” = (!?I~ +- (I%?)” vi” (8) 

Equation (8 ) yields 4 and F,. Further * if F,, Fs, ‘. . . t Fk have been found, then FK+1 
can be determined by considering Eq.(‘7 ) on the manifold defined by the equations 

V 
qk+2 

= ,..., 0 Vpn = 0. Clearly, Fj are analytic functions and their lower order 
terms have the form 

21 I.‘1 = m-lql(cr12 + q2 ) -I- . . ., 122 = m-‘g2 (412 + q22)’ + . . . 

al 
t’,=1/2q3(q12+q2) -t*..t n 1: = 1/2q ((II2 + q$)( + . . . 

The quadratic form 
11 

c RijPiPj> gij = +[;;I ) 
2 

3 

i,+1 / 
+ '9, 

is positive definite on the set 

(h is a sufficiently small number). 
Indeed, we have 4s’ i- 94: -I- - - 9 i- QnZ < 6 671’ -k Qa2)1 on the set Q , where 

6 (h) is an arbitrarily small quantity when h is small. Writing the corresponding matrix 

in the form G = Go f G, + - - - where Go is a matrix composed of the lower order 

terms, we obtain 

G” ;: 2-Q* = P-1 x 

m-1 [(Zi + 1) qf i- q‘pl zLm-lq~q2 l~2~q~q~ - - . l/~lq~q*_~ ‘Irrkw, 

2zm-‘q~ql m-I f q? + (21 + 1) qa’L1 Wqzq3 . . . ‘/21q2q,l wqaq, 

‘lz~q&l ‘I2tq,q2 r . . . 0 0 
- . . . 
* . . . 

. * 

‘l2lq n-iqi ‘/21q,_l92 0 1:. r 0 

wq,q~ ‘ldq,q2 0 . * . 0 r 

(I = (112 + 48) 

The Silvester determinants which begin in the lower right- hand corner of the matrix G,, 
have the form 
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A n-1= P-a 
{ 

m-1 [q12 + (2Zf 1) gpq - F p) 
12912 12919a 

A,,= 
m-l I(21 + 1) 912 + 92‘+ -,g7 P 2lm%92 - 7 P 

%192 
2lm-l9,92 - 7 P 

12q2* 
m-l 141+- (21 + 1) g2+Y - -4r P 

XP=Qs‘!+qH+*.-+~,a) 

In computing An-i and A,, , we haveused thefollowingobviousassumption : if A, c, b 

and k are the m x m, m x n, n X m, n X n matrices respectively, and 1 k I# 0, then 

A c I I b k 
= Ikl IA-e&-&I 

We have, on the set Q , Aj > 0, j = 1, 2, . . . , n with %’ -!- 9aa + . . . -i- qn2 # 0. 
Consequently the vector function satisfies the conditions of the Chetaev theorem and 

this proves 

T h e o r e m 2. If the conditions : 1) function v” (qr, q2) satisfies the conditions of 
the Lemma and 2 ) function 1’ (Q, qa, . . . , q,,) has no strictly local minimum of theposi- 

tion of equilibriums both hold, then the position of equilibrium of the Hamiltonian system 

is unstable, 

The author thanks V. V. Rumiantsev and the participants of his seminar for assessing 
the paper, 
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